Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires

Materials (Basel). 2019 Oct 23;12(21):3462. doi: 10.3390/ma12213462.

Abstract

Both copper and aluminum are widely applicable throughout a variety of industrial and commercial branches, however, joining them in a composite provides the possibility of combining all their advantageous properties in one material. This study investigates uniquely sequenced copper-aluminum clad composite wires, fabricated via rotary swaging technology. The composites were processed at 20 °C and 250 °C to a diameter of 5 mm. Structural observations and the determination of residual stress within both elements of the swaged wires were performed via electron microscopy; the experimental results were correlated with numerical predictions. As shown in the results, both the applied swaging force and temperature affected the plastic flow, which had a direct influence on residual stress and texture development; the Alsheath elements exhibited ideal rolling textures, whereas the Cuwires elements featured ideal shear texture orientation. The grains within both the Alsheath elements of the 5 mm composite wire were refined down to sub-micron size. Structural restoration also had a positive influence on residual stress.

Keywords: clad composite; finite element analysis; residual stress; rotary swaging; substructure.