LIPSS Structures Induced on Graphene-Polystyrene Composite

Materials (Basel). 2019 Oct 23;12(21):3460. doi: 10.3390/ma12213460.

Abstract

A laser induced periodic surface structure (LIPSS) on graphene doped polystyrene was prepared by the means of a krypton fluoride (KrF) laser with the wavelength of 248 nm and precisely desired physico-chemical properties were obtained for the structure. Surface morphology after laser modification of polystyrene (PS) doped with graphene nanoplatelets (GNP) was studied. Laser fluence values of modifying laser light varied between 0-40 mJ·cm-2 and were used on polymeric PS substrates doped with 10, 20, 30, and 40 wt. % of GNP. GNP were incorporated into PS substrate with the solvent casting method and further laser modification was achieved with the same amount of laser pulses of 6000. Formed nanostructures with a periodic pattern were examined by atomic force microscopy (AFM). The morphology was also studied with scanning electron microscopy SEM. Laser irradiation resulted in changes of chemical composition on the PS surface, such as growth of oxygen concentration. This was confirmed with energy-dispersive X-ray spectroscopy (EDS).

Keywords: laser exposure; nanocomposites; polymers.