Securing Cryptographic Chips against Scan-Based Attacks in Wireless Sensor Network Applications

Sensors (Basel). 2019 Oct 22;19(20):4598. doi: 10.3390/s19204598.

Abstract

Wireless sensor networks (WSN) have deeply influenced the working and living styles of human beings. Information security and privacy for WSN is particularly crucial. Cryptographic algorithms are extensively exploited in WSN applications to ensure the security. They are usually implemented in specific chips to achieve high data throughout with less computational resources. Cryptographic hardware should be rigidly tested to guarantee the correctness of encryption operation. Scan design improves significantly the test quality of chips and thus is widely used in semiconductor industry. Nevertheless, scan design provides a backdoor for attackers to deduce the cipher key of a cryptographic core. To protect the security of the cryptographic system we first present a secure scan architecture, in which an automatic test control circuitry is inserted to isolate the cipher key in test mode and clear the sensitive information at mode switching. Then, the weaknesses of this architecture are analyzed and an enhanced scheme using concept of test authorization is proposed. If the correct authorization key is applied within the specific time, the normal test can be performed. Otherwise, only secure scan test can be performed. The enhanced scan scheme ensures the security of cryptographic chips while remaining the advantages of scan design.

Keywords: cryptography; hardware security; scan-based attack; wireless sensor networks.