Acute Downregulation of Novel Hypothalamic Protein Sushi Repeat-Containing Protein X-Linked 2 after Experimental Traumatic Brain Injury

J Neurotrauma. 2020 Apr 1;37(7):924-938. doi: 10.1089/neu.2019.6739. Epub 2019 Dec 5.

Abstract

Traumatic brain injury (TBI) causes damage to the hypothalamo-hypophyseal axis, leading to endocrine dysregulation in up to 40% of TBI patients. Hence, there is an urgent need to identify non-invasive biomarkers for TBI-associated hypothalamo-hypophyseal pathology. Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel hypothalamic protein expressed in both rat and human brain. Our objective was to investigate the effect of acquired brain injury on plasma SRPX2 protein levels and SRPX2 expression in the brain. We induced severe lateral fluid-percussion injury in adult male rats and investigated changes in SRPX2 expression at 2 h, 6 h, 24 h, 48 h, 72 h, 5 days, 7 days, 14 days, 1 month, and 3 months post-injury. The plasma SRPX2 level was assessed by Western blot analysis. Hypothalamic SRPX2-immunoreactive neuronal numbers were estimated from immunostained preparations. At 2 h post-TBI, plasma SRPX2 levels were markedly decreased compared with the naïve group (area under the curve = 1.00, p < 0.05). Severe TBI caused a reduction in the number of hypothalamic SRPX2-immunoreactive neurons bilaterally at 2 h post-TBI compared with naïve group (5032 ± 527 vs. 9440 ± 351, p < 0.05). At 1 month after severe TBI, however, the brain and plasma SRPX2 levels were comparable between the TBI and naïve groups (p > 0.05). Unsupervised hierarchical clustering using SRPX2 expression differentiated animals into injured and uninjured clusters. Our findings indicate that TBI leads to an acute reduction in SRPX2 protein expression and reduced plasma SRPX2 level may serve as a candidate biomarker of hypothalamic injury.

Keywords: hypothalamus; lateral fluid-percussion injury; sushi repeat-containing protein X-linked 2; traumatic brain injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Brain Injuries, Traumatic / metabolism*
  • Brain Injuries, Traumatic / pathology
  • Down-Regulation / physiology*
  • Hypothalamus / metabolism*
  • Hypothalamus / pathology
  • Male
  • Membrane Proteins / metabolism*
  • Neoplasm Proteins / metabolism*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Biomarkers
  • Membrane Proteins
  • Neoplasm Proteins
  • SRPX2 protein, human