Restriction of Flip-flop Motion as a Mechanism for Aggregation-Induced Emission

J Phys Chem Lett. 2019 Nov 7;10(21):6929-6935. doi: 10.1021/acs.jpclett.9b02922. Epub 2019 Oct 28.

Abstract

Although the restriction of intramolecular motion (RIM) has been accepted as a general working mechanism for the aggregation-induced emission (AIE) phenomenon, some new mechanisms, such as suppression of Kasha's rule (SOKR), has also been proposed to explain the AIE of boron difluorohydrazone (BODIHY) derivatives. However, the understanding of the relation and difference between RIM and SOKR mechanisms is limited. To address this issue, we performed a theoretical study on the excited state decay of a series of BODIHY derivatives. Surprisingly, we found that the first excited state of BODIHY derivatives is a bright state and contradicts with the SOKR mechanism. Importantly, we proposed a new mechanism, termed as restriction of flip-flop motion, to explain the AIE of BODIHY derivatives. This mechanism involves the formation of an umbrella-like minimal energy conical intersection through flip-flop motion, which is easily accessible in low-viscosity solvents and will be restricted in high-viscosity solvents.