Bending Fatigue Behaviors Analysis and Fatigue Life Prediction of 20Cr2Ni4 Gear Steel with Different Stress Concentrations near Non-metallic Inclusions

Materials (Basel). 2019 Oct 21;12(20):3443. doi: 10.3390/ma12203443.

Abstract

To investigate the relationship between inclusions and bending fatigue behaviors in 20Cr2Ni4 steel under different stress concentrations. This paper designs a new experimental method to prefabricate different size stress concentrations near the inclusions, and then conducts a new type of bending fatigue test to study the inclusions and their surrounding stress distributions in 20Cr2Ni4 steel. A microhardness tester was combined with laser etching equipment to realize the prefabrication of different stress concentrations at arbitrary positions around any inclusion on the gear steel surface. This method provides an experimental basis for the quantitative analysis of the relationship between stress distribution and fatigue life around the inclusions of heavy-duty gear steels. We also predict the bending fatigue lives of heavy-duty gear steels with different types of inclusions, stress states, and spatial distributions. Then, based on the prefabricated notch parameters and the state of inclusions in the steel, a mathematical model of quantitative analysis is proposed, which can accurately predict the fatigue limit of heavy-duty gear steel. The research results can be applied to the actual use of heavy-duty gears and to the accurate life estimation based on the state of gear stress, thereby providing a quantitative reference model for subsequent gear steel production and gear part processing.

Keywords: bending fatigue behavior; non-metallic inclusions; quantitative analysis; stress concentrations.