Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens

Nat Plants. 2019 Nov;5(11):1167-1176. doi: 10.1038/s41477-019-0527-4. Epub 2019 Oct 21.

Abstract

Soil-borne fungal pathogens that cause crop disease are major threats to agriculture worldwide. Here, we identified a secretory polysaccharide deacetylase (PDA1) from the soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, that facilitates virulence through direct deacetylation of chitin oligomers whose N-acetyl group contributes to host lysine motif (LysM)-containing receptor perception for ligand-triggered immunity. Polysaccharide deacetylases are widely present in fungi, bacteria, insects and marine invertebrates and have been reported to possess diverse functions in developmental processes rather than virulence. A phylogenetics analysis of more than 5,000 fungal proteins with conserved polysaccharide deacetylase domains showed that the V. dahliae PDA1-containing subtree includes a large number of proteins from the Verticillium genus as well as the Fusarium genus, another group of characterized soil-borne fungal pathogens, suggesting that soil-borne fungal pathogens have adopted chitin deacetylation as a major virulence strategy. We showed that a Fusarium PDA1 is required for virulence in cotton plants. This study reveals a substantial virulence function role of polysaccharide deacetylases in pathogenic fungi and demonstrates a subtle mechanism whereby deacetylation of chitin oligomers converts them to ligand-inactive chitosan, representing a common strategy of preventing chitin-triggered host immunity by soil-borne fungal pathogens.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Amidohydrolases / genetics
  • Amidohydrolases / metabolism*
  • Chitin / metabolism*
  • Fusarium / enzymology
  • Fusarium / pathogenicity
  • Gossypium / metabolism
  • Gossypium / microbiology*
  • Plant Diseases / microbiology*
  • Soil Microbiology*
  • Solanum lycopersicum / metabolism
  • Verticillium / enzymology
  • Verticillium / pathogenicity*
  • Virulence

Substances

  • Chitin
  • Amidohydrolases
  • polysaccharide deacetylase