Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters

Nat Commun. 2019 Oct 21;10(1):4792. doi: 10.1038/s41467-019-12702-8.

Abstract

The treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amido-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass. It is active towards community-acquired and hospital-associated MRSA strains which are resistant to multiple drugs including vancomycin and daptomycin. Its antibacterial activity is superior to that of vancomycin in MRSA mouse and human ex vivo skin infection models, with no acute in vivo toxicity in repeated dosing in mice at above therapeutic levels. The copolymer displays bacteria-activated surfactant-like properties, resulting from contact with the bacterial envelope. Our results indicate that this class of non-toxic molecule, effective against different bacterial sub-populations, has promising potential for the treatment of S. aureus infections.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Biofilms / drug effects*
  • Drug Resistance, Multiple, Bacterial
  • Glucose / chemical synthesis*
  • Glucose / pharmacology
  • Glucose / therapeutic use
  • Humans
  • In Vitro Techniques
  • Lysine / analogs & derivatives*
  • Lysine / chemical synthesis
  • Lysine / pharmacology
  • Lysine / therapeutic use
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Mice
  • Microbial Sensitivity Tests
  • Polymerization
  • Staphylococcal Skin Infections / drug therapy*
  • beta-Lactams / chemical synthesis*
  • beta-Lactams / pharmacology
  • beta-Lactams / therapeutic use

Substances

  • beta-Lactams
  • beta-lysine
  • Glucose
  • Lysine