Application of Two-Photon-Absorption Pulsed Laser for Single-Event-Effects Sensitivity Mapping Technology

Materials (Basel). 2019 Oct 18;12(20):3411. doi: 10.3390/ma12203411.

Abstract

Single-event effects (SEEs) in integrated circuits and devices can be studied by utilizing ultra-fast pulsed laser system through Two Photon Absorption process. This paper presents technical ways to characterize key factors for laser based SEEs mapping testing system: output power from laser source, spot size focused by objective lens, opening window of Pockels cell, and calibration of injected laser energy. The laser based SEEs mapping testing system can work in a stable and controllable status by applying these methods. Furthermore, a sensitivity map of a Static Random Access Memory (SRAM) cell with a 65 nm technique node was created through the established laser system. The sensitivity map of the SRAM cell was compared to a map generated by a commercial simulation tool (TFIT), and the two matched well. In addition, experiments in this paper also provided energy distribution profile along Z axis that is the direction of the pulsed laser injection and threshold energy for different SRAM structures.

Keywords: SRAM; pulsed laser; sensitive mapping; single event effect; two photon absorption.