Recent Progress in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries

Chemistry. 2020 Feb 6;26(8):1720-1736. doi: 10.1002/chem.201904461. Epub 2019 Nov 19.

Abstract

Conventional lithium-ion batteries, with flammable organic liquid electrolytes, have serious safety problems, which greatly limit their application. All-solid-state batteries (ASSBs) have received extensive attention from large-scale energy-storage fields, such as electric vehicles (EVs) and intelligent power grids, due to their benefits in safety, energy density, and thermostability. As the key component of ASSBs, solid electrolytes determine the properties of ASSBs. In past decades, various kinds of solid electrolytes, such as polymers and inorganic electrolytes, have been explored. Among these candidates, organic-inorganic composite solid electrolytes (CSEs) that integrate the advantages of these two different electrolytes have been regarded as promising electrolytes for high-performance ASSBs, and extensive studies have been carried out. Herein, recent progress in organic-inorganic CSEs is summarized in terms of the inorganic component, electrochemical performance, effects of the inorganic ceramic nanostructure, and ionic conducting mechanism. Finally, the main challenges and perspectives of organic-inorganic CSEs are highlighted for future development.

Keywords: all-solid-state batteries; electrochemistry; lithium; organic-inorganic hybrid composites; polymers.

Publication types

  • Review