Enhanced Protective Coatings Based on Nanoparticle fullerene C60 for Oil & Gas Pipeline Corrosion Mitigation

Nanomaterials (Basel). 2019 Oct 17;9(10):1476. doi: 10.3390/nano9101476.

Abstract

Corrosion accounts for huge maintenance cost in the pipeline community. Promotion of protective coatings used for oil/gas pipeline corrosion control, in terms of high corrosion resistance as well as high damage tolerance, are still in high demand. This study was to explore the inclusion of nanoparticle fullerene-C60 in protective coatings for oil/gas pipeline corrosion control and mitigation. Fullerene-C60/epoxy nanocomposite coatings were fabricated using a solvent-free dispersion method through high-speed disk (HSD) and ultrasonication. The morphology of fullerene-C60 particles was characterized by transmission electron microscopy (TEM), and dynamic light scattering (DLS). The data analysis indicated that the nanoparticles were effectively dispersed in the matrix. The performance of the nanocomposites was investigated through their mechanical and electrochemical properties, including corrosion potential, tensile strength, strain at failure, adhesion to substrate, and durability performance. Dogbone shaped samples were fabricated to study the tensile properties of the nanocomposites, and improvement of strength, ultimate strain, and Young's modulus were observed in the C60/epoxy specimens. The results demonstrated that the C60/epoxy composite coatings also had improvements in adhesion strength, suggesting that they could provide high damage tolerance of coatings for engineering applications. Moreover, the electrochemical impedance spectroscopy (EIS) results generated from the accelerated durability test revealed that the developed fullerene-C60 loaded composite coatings exhibited significantly improved corrosion resistance. The nanocomposite with 0.5 and 1.0 wt.% of C60 particles behaved as an intact layer for corrosion protection, even after 200-h salt spray exposure, as compared to the control coating without nanofiller in which severe damage by over 50% reduction was observed.

Keywords: corrosion mitigation; dispersion methods; fullerene-C60; gas and oil pipelines; nano-modified high-performance coating; nanocomposite.