Compound-Specific Chlorine Isotope Analysis of the Herbicides Atrazine, Acetochlor, and Metolachlor

Anal Chem. 2019 Nov 19;91(22):14290-14298. doi: 10.1021/acs.analchem.9b02497. Epub 2019 Oct 31.

Abstract

A gas chromatography-single quadrupole mass spectrometry method was developed and validated for compound-specific chlorine isotope analysis (Cl-CSIA) of three chlorinated herbicides, atrazine, acetochlor, and metolachlor, which are widespread contaminants in the environment. For each compound, the two most abundant ions containing chlorine (202/200 for atrazine, 225/223 for acetochlor, and 240/238 for metolachlor) and a dwell time of 30 ms were determined as optimized MS parameters. A limit of precise isotope analysis for ethyl acetate solutions of 10 mg/L atrazine, 10 mg/L acetochlor, and 5 mg/L metolachlor could be reached with an associated uncertainty between 0.5 and 1‰. To this end, samples were measured 10-fold and bracketed with two calibration standards that covered a wide range of δ37Cl values and for which amplitudes matched those of the samples within 20% tolerance. The method was applied to investigate chlorine isotope fractionation during alkaline hydrolysis of metolachlor, which showed a shift in δ37Cl of +46‰ after 98% degradation, demonstrating that chlorine isotope fractionation could be a sensitive indicator of transformation processes even when limited degradation occurs. This method, combined with large-volume solid-phase extraction (SPE), allowed application of Cl-CSIA to environmentally relevant concentrations of widespread herbicides (i.e., 0.5-5 μg/L in water before extraction). Therefore, the combination of large-volume SPE and Cl-CSIA is a promising tool for assessing the transformation processes of these pollutants in the environment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetamides / analysis*
  • Atrazine / analysis*
  • Chlorine / analysis
  • Gas Chromatography-Mass Spectrometry / methods
  • Herbicides / analysis*
  • Isotopes / analysis
  • Solid Phase Extraction / methods
  • Toluidines / analysis*
  • Water Pollutants, Chemical / analysis*

Substances

  • Acetamides
  • Herbicides
  • Isotopes
  • Toluidines
  • Water Pollutants, Chemical
  • Chlorine
  • acetochlor
  • Atrazine
  • metolachlor