Bi1-xEuxFeO3 Powders: Synthesis, Characterization, Magnetic and Photoluminescence Properties

Nanomaterials (Basel). 2019 Oct 16;9(10):1465. doi: 10.3390/nano9101465.

Abstract

Europium substituted bismuth ferrite powders were synthesized by the sol-gel technique. The precursor xerogel was characterized by thermal analysis. Bi1-xEuxFeO3 (x = 0-0.20) powders obtained after thermal treatment of the xerogel at 600 °C for 30 min were investigated by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Mössbauer spectroscopy. Magnetic behavior at room temperature was tested using vibrating sample magnetometry. The comparative results showed that europium has a beneficial effect on the stabilization of the perovskite structure and induced a weak ferromagnetism. The particle size decreases after the introduction of Eu3+ from 167 nm for x = 0 to 51 nm for x = 0.20. Photoluminescence spectroscopy showed the enhancement of the characteristic emission peaks intensity with the increase of Eu3+ concentration.

Keywords: bismuth ferrite; magnetic properties; photoluminescence properties; sol-gel process.