A Kuramoto model of self-other integration across interpersonal synchronization strategies

PLoS Comput Biol. 2019 Oct 16;15(10):e1007422. doi: 10.1371/journal.pcbi.1007422. eCollection 2019 Oct.

Abstract

Human social behaviour is complex, and the biological and neural mechanisms underpinning it remain debated. A particularly interesting social phenomenon is our ability and tendency to fall into synchronization with other humans. Our ability to coordinate actions and goals relies on the ability to distinguish between and integrate self and other, which when impaired can lead to devastating consequences. Interpersonal synchronization has been a widely used framework for studying action coordination and self-other integration, showing that even in simple interactions, such as joint finger tapping, complex interpersonal dynamics emerge. Here we propose a computational model of self-other integration via within- and between-person action-perception links, implemented as a simple Kuramoto model with four oscillators. The model abstracts each member of a dyad as a unit consisting of two connected oscillators, representing intrinsic processes of perception and action. By fitting this model to data from two separate experiments we show that interpersonal synchronization strategies rely on the relationship between within- and between-unit coupling. Specifically, mutual adaptation exhibits a higher between-unit coupling than within-unit coupling; leading-following requires that the follower unit has a low within-unit coupling; and leading-leading occurs when two units jointly exhibit a low between-unit coupling. These findings are consistent with the theory of interpersonal synchronization emerging through self-other integration mediated by processes of action-perception coupling. Hence, our results show that chaotic human behaviour occurring on a millisecond scale may be modelled using coupled oscillators.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Humans
  • Interpersonal Relations
  • Nonlinear Dynamics
  • Self Concept*
  • Social Behavior

Grants and funding

OAH, PV and MLK is supported as part of the Center for Music in the Brain, Danish National Research Foundation (DNRF117). MLK is supported by the ERC Consolidator Grant: CAREGIVING (615539). JC is supported under the project NORTE-01-0145-FEDER-000023 from the Northern Portugal Regional Operational Program (NORTE2020). JC is also supported by the Portuguese Foundation for Science and Technology CEECIND/03325/2017, Portugal. IK is supported by The VILLUM Experiment grant, “Enhancing social interaction through real-time two-brain imaging”. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.