Cocktail Strategy Based on NK Cell-Derived Exosomes and Their Biomimetic Nanoparticles for Dual Tumor Therapy

Cancers (Basel). 2019 Oct 14;11(10):1560. doi: 10.3390/cancers11101560.

Abstract

Successful cancer therapy requires drugs being precisely delivered to tumors. Nanosized drugs have attracted considerable recent attention, but their toxicity and high immunogenicity are important obstacles hampering their clinical translation. Here we report a novel "cocktail therapy" strategy based on excess natural killer cell-derived exosomes (NKEXOs) in combination with their biomimetic core-shell nanoparticles (NNs) for tumor-targeted therapy. The NNs were self- assembled with a dendrimer core loading therapeutic miRNA and a hydrophilic NKEXOs shell. Their successful fabrication was confirmed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The resulting NN/NKEXO cocktail showed highly efficient targeting and therapeutic miRNA delivery to neuroblastoma cells in vivo, as demonstrated by two-photon excited scanning fluorescence imaging (TPEFI) and with an IVIS Spectrum in vivo imaging system (IVIS), leading to dual inhibition of tumor growth. With unique biocompatibility, we propose this NN/NKEXO cocktail as a new avenue for tumor therapy, with potential prospects for clinical applications.

Keywords: NK cell-derived exosomes; antitumor strategy; biomimetic core–shell nanoparticles; drug delivery system.