Rare-Earth Zirconate Ln2Zr2O7 (Ln: La, Nd, Gd, and Dy) Powders, Xerogels, and Aerogels: Preparation, Structure, and Properties

Inorg Chem. 2019 Nov 4;58(21):14467-14477. doi: 10.1021/acs.inorgchem.9b01965. Epub 2019 Oct 15.

Abstract

The physicochemical properties of rare-earth zirconates can be tuned by the rational modification of their structures and phase compositions. In the present work, La3+-, Nd3+-, Gd3+-, and Dy3+-zirconate nanostructured materials were prepared by different synthetic protocols, leading to powders, xerogels, and, for the first time, monolithic aerogels. Powders were synthesized by the co-precipitation method, while xerogels and aerogels were synthesized by the sol-gel technique, followed by ambient and supercritical drying, respectively. Their microstructures, thermogravimetric profiles, textural properties, and crystallographic structures are reported. The co-precipitation method led to dense powders (SBET < 1 m2 g-1), while the sol-gel technique resulted in large surface area xerogels (SBET = 144 m2 g-1) and aerogels (SBET = 168 m2 g-1). In addition, the incorporation of lanthanide ions into the zirconia lattice altered the crystal structures of the powders, xerogels, and aerogels. Single-phase pyrochlores were obtained for La2Zr2O7 and Nd2Zr2O7 powders and xerogels, while defect fluorite structures formed in the case of Gd2Zr2O7 and Dy2Zr2O7. All aerogels contain a mixture of cubic and tetragonal ZrO2 phases. Thus, a direct effect is shown between the drying conditions and the resulting crystalline phases of the nanostructured rare-earth zirconates.