Quorum sensing for population-level control of bacteria and potential therapeutic applications

Cell Mol Life Sci. 2020 Apr;77(7):1319-1343. doi: 10.1007/s00018-019-03326-8. Epub 2019 Oct 14.

Abstract

Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.

Keywords: Cell–cell communication; Genetic circuit; Gut microbiota; Microbial community; Population control; Signaling molecule.

Publication types

  • Review

MeSH terms

  • Bacteria / growth & development*
  • Biofilms / growth & development
  • Gastrointestinal Microbiome
  • Logic
  • Quorum Sensing* / genetics
  • Species Specificity