Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification

J Hazard Mater. 2020 Feb 15:384:121373. doi: 10.1016/j.jhazmat.2019.121373. Epub 2019 Oct 1.

Abstract

In this paper, Ce-AlOOH were investigated to develop as an adsorbent for removing fluoride. Oxalic acid was selected as an effectively modified reagent to improve the performance of adsorption. Cerium existed in the form of CeO2 and kept good stability during the adsorption process through XRD, TEM, BET, Raman, and Infrared spectra. The adsorption capacity could be improved with the addition of cerium (62.8 mg/g). Specially, the oxalic acid modification significantly promoted the adsorption capacity to 90 mg/g. There adsorption isotherm and kinetics were estimated independently. These adsorption behaviors were in accordance with the Freundlich model and pseudo-second-order model, indicating that chemisorption was the rate-determining step. the obtained adsorbents all exhibited good recycling performance using oxalic acid as the regeneration reagent. The species of tetravalent cerium was the important adsorption sites. The mechanism was carefully explored by XPS analysis. The fluoride adsorption process can be ascribed to the combined effect of the electrostatic action, surface coordination, and ion exchange between M-OH and F-. Furthermore, modification of oxalic acid exhibited a new easier way to quickly increase M-OH content, which contributed to the dominated adsorption sites.

Keywords: Adsorption; AlOOH; Cerium oxide; Fluoride removal; Oxalic acid.

Publication types

  • Research Support, Non-U.S. Gov't