Optimization, isotherm, and kinetic studies of diclofenac removal from aqueous solutions by Fe-Mn binary oxide adsorbents

Environ Sci Pollut Res Int. 2019 Nov;26(31):32407-32419. doi: 10.1007/s11356-019-06514-y. Epub 2019 Oct 12.

Abstract

Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug, has been detected in effluents of conventional wastewater treatment plants worldwide. The presence of this compound in various water resources even at very low concentrations poses a big threat both to human health and aquatic ecosystems. In this study, the removal of diclofenac from aqueous solution using Fe-Mn binary oxide (FMBO) adsorbents was investigated. FMBO adsorbents were prepared at varying Fe/Mn molar ratios (1:0, 3:1, and 1:1) through simultaneous oxidation and co-precipitation methods. Batch adsorption experiments were conducted to evaluate the effects of important parameters, such as initial DCF concentration, FMBO dosage, solution pH, and Fe/Mn molar ratio, on DCF removal. Acidic to neutral pH conditions were more favorable for DCF adsorption, while increasing initial DCF concentration and adsorbent dosage resulted in higher DCF removal efficiencies for the three oxides. Lower Fe/Mn molar ratio during FBMO synthesis favored higher DCF removals of up to 99% within a wide pH range. Optimization of operating parameters (initial DCF concentration, FMBO dosage, and solution pH) by Box-Behnken design resulted in up to 28.84 mg g-1 DCF removal for 3:1 FMBO. Freundlich isotherm best described the experimental data, indicating that adsorption occurred on heterogeneous adsorbent surface. Chemisorption was the rate-limiting step of the DCF removal, as best described by the pseudo-second-order kinetic model.

Keywords: Adsorption; Binary metal oxide; Box–Behnken design; Diclofenac; Pharmaceuticals; Wastewater treatment.

MeSH terms

  • Adsorption
  • Diclofenac / chemistry*
  • Ecosystem
  • Hydrogen-Ion Concentration
  • Iron / chemistry*
  • Kinetics
  • Manganese / chemistry*
  • Oxidation-Reduction
  • Oxides / chemistry
  • Wastewater
  • Water Pollutants, Chemical / chemistry*
  • Water Purification / methods*

Substances

  • Oxides
  • Waste Water
  • Water Pollutants, Chemical
  • Diclofenac
  • Manganese
  • Iron