Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop

Nat Commun. 2019 Oct 11;10(1):4654. doi: 10.1038/s41467-019-12688-3.

Abstract

Controlling the temporal and spectral properties of light is crucial for many applications. Current state-of-the-art techniques for shaping the time- and/or frequency-domain field of an optical waveform are based on amplitude and phase linear spectral filtering of a broadband laser pulse, e.g., using a programmable pulse shaper. A well-known fundamental constraint of these techniques is that they can be hardly scaled to offer a frequency resolution better than a few GHz. Here, we report an approach for user-defined optical field spectral shaping using a simple scheme based on a frequency shifting optical loop. The proposed scheme uses a single monochromatic (CW) laser, standard fiber-optics components and low-frequency electronics. This technique enables efficient synthesis of hundreds of optical spectral components, controlled both in phase and in amplitude, with a reconfigurable spectral resolution from a few MHz to several tens of MHz. The technique is applied to direct generation of arbitrary radio-frequency waveforms with time durations exceeding 100 ns and a detection-limited frequency bandwidth above 25 GHz.

Publication types

  • Research Support, Non-U.S. Gov't