Could the super-pulsed CO2 laser be used for oral excisional biopsies?

Adv Clin Exp Med. 2019 Nov;28(11):1513-1517. doi: 10.17219/acem/104525.

Abstract

Background: The main purpose of a biopsy is microscopic examination and diagnosis. Keeping the margins of specimens safe and readable is always fundamental to detecting marginal infiltrations or malignant transformation. Numerous options and tools have been introduced for biopsy procedures. Lasers are one of these options that provide many enhancements to clinical and surgical biopsy procedures in comparison to scalpels.

Objectives: The aim of the present study is to quantify the thermal artefacts in histological specimens obtained using a CO2 laser from different oral mucosal lesions and to evaluate if the resulting thermal effect hinders the histological examination. This aim is accomplished through quantitatively and qualitatively assessing the thermal effect in both the epithelium and connective tissue.

Material and methods: A super-pulsed CO2 laser (10,600 nm) was used to obtain 10 excision biopsy samples. The parameters were a power of 4.2 W in focused mode and a frequency of 80 Hz in super-pulse mode. The histological analysis was performed with an optical microscope. Computerized imaging software was utilized to quantitatively evaluate the thermal effect in both the epithelium and connective tissue expressed in microns.

Results: The thermal effect of the CO2 laser was limited to the surgical resection margins in all the specimens and did not hinder the histological analysis. Thermal artefacts were observed in 3 specimens. The range of thermal effects in the epithelial tissue was between 184 μm and 2,292 μm, while in the connective tissue it was between 133 μm and 2,958 μm.

Conclusions: The resulting thermal effects of using a CO2 laser did not hamper the histological evaluation. Utilizing a laser in biopsy procedures should be tailored. Not only should laser parameters and safety margins be taken into consideration but also the working time, clinical accessibility, and the nature and water content of the tissue.

Keywords: artefacts; biopsy; carbon dioxide laser (CO2).

MeSH terms

  • Biopsy / methods*
  • Humans
  • Laser Therapy*
  • Lasers, Gas*