Towards a Stakeholder-Oriented Blockchain-Based Architecture for Electronic Health Records: Design Science Research Study

J Med Internet Res. 2019 Oct 7;21(10):e13585. doi: 10.2196/13585.

Abstract

Background: Data security issues still constitute the main reason for the sluggish dissemination of electronic health records (EHRs). Given that blockchain technology offers the possibility to verify transactions through a decentralized network, it may serve as a solution to secure health-related data. Therefore, we have identified stakeholder-specific requirements and propose a blockchain-based architecture for EHRs, while referring to the already existing scientific discussions on the potential of blockchain for use in EHRs.

Objective: This study aimed to introduce blockchain technology for EHRs, based on identifying stakeholders and systematically eliciting their requirements, and to discuss the key benefits (KBs) and key challenges (KCs) of blockchain technology in the context of EHRs.

Methods: The blockchain-based architecture was developed in the framework of the design science research paradigm. The requirements were identified using a structured literature review and interviews with nine health care experts. Subsequently, the proposed architecture was evaluated using 4 workshops with 15 participants.

Results: We identified three major EHR stakeholder groups and 34 respective requirements. On this basis, we developed a five-layer architecture. The subsequent evaluation of the artifact was followed by the discussion of 12 KBs and 12 KCs of a blockchain-based architecture for EHRs. To address the KCs, we derived five recommendations for action for science and practice.

Conclusions: Our findings indicate that blockchain technology offers considerable potential to advance EHRs. Improvements to currently available EHR solutions are expected, for instance, in the areas of data security, traceability, and automation by smart contracts. Future research could examine the patient's acceptance of blockchain-based EHRs and cost-benefit analyses.

Keywords: blockchain; data security; electronic health records; information storage and retrieval.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blockchain / standards*
  • Computer Security / standards*
  • Electronic Health Records / standards*
  • Humans
  • Research Design / standards*