Mechanical-Induced Polarization Switching in Relaxor Ferroelectric Single Crystals

ACS Appl Mater Interfaces. 2019 Oct 30;11(43):40758-40768. doi: 10.1021/acsami.9b12301. Epub 2019 Oct 17.

Abstract

Control of coupling between electric and elastic orders in ferroelectric bulks is vital to understand their nature and enrich the multifunctionality of polarization manipulation applied in domain-based electronic devices such as ferroelectric memories and data storage ones. Herein, taking (1 - x%)Pb(Mg1/3Nb2/3)O3-x%PbTiO3 (PMN-x%PT, x = 32, 40) as the prototype, we demonstrate the less-explored mechanical switching in relaxor ferroelectric single crystals using scanning probe microscopy. Low mechanical forces can induce metastable and electrically erasable polarization reversal clearly from electrical-created bipolar domains around the 180° domain wall in monoclinic PMN-32%PT and inside the c+ domain in tetragonal PMN-40%PT. The mechanical switching evolutions show force/time dependence and time-force equivalence. The time-dependent mechanical switching behavior stems from the participation and contribution of polar nanoregions. Flexoelectricity and bulk Vegard strain effect can account for the mechanical switching but notably, the former in the two has very different origins. These investigations exhibit the possibility of mechanical switching as a tool to manipulate polarization states in ferroelectric bulks, and provide the potential of these crystals as substrates in mechanical polarization control of future thin-film devices.

Keywords: flexoelectricity; mechanical switching; relaxor ferroelectrics; scanning probe microscopy; single crystal.