A Passive Wireless Crack Sensor Based on Patch Antenna with Overlapping Sub-Patch

Sensors (Basel). 2019 Oct 7;19(19):4327. doi: 10.3390/s19194327.

Abstract

Monolithic patch antennas for deformation measurements are designed to be stressed. To avoid the issues of incomplete strain transfer ratio and insufficient bonding strength of stressed antennas, this paper presents a passive wireless crack sensor based on an unstressed patch antenna. The rectangular radiation patch of the proposed sensor is partially covered by a radiation sub-patch, and the overlapped length between them will induce the resonate frequency shift representing the crack width. First, the cavity model theory is adopted to show how the resonant frequencies of the crack sensor are related to the overlapped length between the patch antenna and the sub-patch. This phenomenon is further verified by numerical simulation using the Ansoft high-frequency structure simulator (HFSS), and results show a sensitivity of 120.24 MHz/mm on average within an effective measuring range of 1.5 mm. One prototype of proposed sensor was fabricated. The experiments validated that the resonant frequency shifts are linearly proportional to the applied crack width, and the resolution is suitable for crack width measuring.

Keywords: covered radiation patch; crack width monitoring; passive wireless sensor; patch antenna.