pH-Responsive Carboxymethylcellulose Nanoparticles for 68Ga-WBC Labeling in PET Imaging

Polymers (Basel). 2019 Oct 5;11(10):1615. doi: 10.3390/polym11101615.

Abstract

Carboxymethylcellulose (CMC) is a well-known pharmaceutical polymer, recently gaining attention in the field of nanomedicine, especially as a polyelectrolyte agent for the formation of complexes with oppositely charged macromolecules. Here, we report on the application of pH-sensitive pharmaceutical grade CMC-based nanoparticles (NP) for white blood cells (WBC) PET imaging. In this context and as an alternative to 99mTc-HMPAO SPECT labeling, the use of 68Ga3+ as PET radionuclide was investigated since, at early time points, it could provide the greater spatial resolution and patient convenience of PET tomography over SPECT clinical practices. Two operator-friendly kit-type formulations were compared, with the intention of radiolabeling within a short time (10 min), under mild conditions (physiological pH, room temperature) and in agreement with the actual clinically applied guidelines. NP were labeled by directly using 68Ga3+ eluted in HCL 0.05 N, from hospital suited 68Ge/68Ga generator and in absence of chelator. The first kit type approach involved the application of 68Ga3+ as an ionotropic gelation agent for in-situ forming NP. The second kit type approach concerned the re-hydration of a proper freeze-dried injectable NP powder. pH-sensitive NP with 250 nm average diameter and 80% labeling efficacy were obtained. The NP dispersant medium, including a cryoprotective agent, was modulated in order to optimize the Zeta potential value (-18 mV), minimize the NP interaction with serum proteins and guarantee a physiological environment for WBC during NP incubation. Time-dependent WBC radiolabeling was correlated to NP uptake by using both confocal and FT-IR microscopies. The ready to use lyophilized NP formulation approach appears promising as a straightforward 68Ga-WBC labeling tool for PET imaging applications.

Keywords: 68Ga; PET; WBC labeling; carboxymethylcellulose; nanoparticles; pH sensitive; radiolabeling.