Influence of Thermal Parameters Related to Destabilization Treatments on Erosive Wear Resistance and Microstructural Variation of White Cast Iron Containing 18% Cr. Application of Design of Experiments and Rietveld Structural Analysis

Materials (Basel). 2019 Oct 5;12(19):3252. doi: 10.3390/ma12193252.

Abstract

High-Cr hypo-eutectic white cast irons are used in very demanding environments that require high resistance to erosive wear. The influence on the microstructural variation and erosive wear resistance of several fundamental factors related to the thermal treatments of these cast irons was analysed by means of a fractional Design of Experiments (DoE). These factors included the ones related to the destabilization of austenite. The precipitated phases were identified by X-ray diffraction (XRD), while the Rietveld structural refinement method was used to determine their percentages by weight. Erosion wear resistance was calculated using the test defined by ASTM G76. It was concluded that the quench cooling medium does not significantly influence either erosive wear resistance or the proportion of martensite or retained austenite. The destabilization temperature is a key factor with respect to the percentage of retained austenite. In order to increase the amount of martensite and decrease the amount of retained austenite, temperatures not exceeding 1000 °C are required. An increase of 100 °C in the destabilization temperature can lead to a 25% increase in retained austenite. Moreover, tempering temperatures of around 500 °C favour an additional increase in the percentage of martensite. Erosive wear commences on the matrix constituent without initially affecting the eutectic carbides. Once the deterioration of the matrix constituent surrounding these carbides occurs, they are released. High tempering times provide an increase in resistance to erosive wear due to a second destabilization of austenite during the said tempering.

Keywords: destabilization of austenite; erosive wear; high chromium white cast iron; retained austenite; secondary carbides.