Ordered Surface Nanostructures Self-Assembled from Rod-Coil Block Copolymers on Microspheres

J Phys Chem Lett. 2019 Oct 17;10(20):6375-6381. doi: 10.1021/acs.jpclett.9b02606. Epub 2019 Oct 8.

Abstract

An ordered surface nanostructure endows materials advanced functions. However, fabricating ordered surface-patterned particles via the polymer self-assembly approach is a challenge. Here we report that poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) rod-coil block copolymers are able to form uniform-surface micelles on polystyrene microspheres through a solution self-assembly approach. The size of the surface micelles can be varied by the molecular weight of the block copolymers. These surface micelles are arranged in a manner consistent with the Euler theorem. Most of the micelles are six-fold coordinated, and the number difference between the five-fold and the seven-fold coordination is 12. Simulations on model systems qualitatively reproduced the experimental findings and provided direct observations for the surface-patterned particles, including the polymer chain packing manner in surface micelles at the molecular level and the array feature of the surface micelles through 2D projections of the surface patterns.