3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering

Electrophoresis. 2019 Dec;40(23-24):3123-3131. doi: 10.1002/elps.201900285. Epub 2019 Oct 14.

Abstract

Plasmonic nanomaterials possessing large-volume, high-density hot spots with high field enhancement are highly desirable for ultrasensitive surface-enhanced Raman scattering (SERS) sensing. However, many as-prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two-step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2 ). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi-periodic cloud-like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large-area accessible dense hot spots. The optimized 3D-structured SERS substrate exhibits high-quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10-9 M. Furthermore, the as-prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10-7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large-area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS-based sensors.

Keywords: 3D Al/Ag plasmonic nanostructure; dense hot spots; large area; surface-enhanced Raman scattering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aluminum / chemistry*
  • Equipment Design
  • Limit of Detection
  • Metal Nanoparticles / chemistry*
  • Reproducibility of Results
  • Silver / chemistry*
  • Spectrum Analysis, Raman / instrumentation*
  • Spectrum Analysis, Raman / methods

Substances

  • Silver
  • Aluminum