A novel hollow-sphere cyclodextrin nanoreactor for the enhanced removal of bisphenol A under visible irradiation

J Hazard Mater. 2020 Feb 15:384:121267. doi: 10.1016/j.jhazmat.2019.121267. Epub 2019 Sep 20.

Abstract

A novel hybrid nanoreactor with spatially separated co-catalysts (SH-CD-Au@CdS@MnOx) was successfully synthesised to remove bisphenol-A (BPA) from water by visible light. The photooxidation intermediates, degradation pathway of BPA and the enhancement mechanism were investigated in particular. Gold (Au) nanoparticles modified with SH-β-cyclodextrin and MnOx nanoparticles were selectively decorated on the interior and exterior surface of hollow CdS nanoreactors, respectively. The directed migration of photogenerated electrons and holes induced by spatially separated co-catalysts lead to high utilization of light, and SH-β-cyclodextrin modification makes catalytic active sites more accessible for oxidation intermediates. Compared with pristine CdS, the hybrid nanoreactor increased the BPA photooxidation reaction rate and the TOC removal efficiency by 5.6-fold and 3.6-fold, respectively. Moreover, the toxic intermediates, such as phenol, were further degraded by visible light. Molecular orbital calculation predicted that the sites on BPA molecule values of (FED2HOMO + FED2LUMO) can be easier attacked by the radical, whereas atoms with higher values of 2FED2HOMO can easily be extracted into electrons. Thus, SH-CD-Au@CdS@MnOx can provide a new strategy for the high-efficiency photodegradation of endocrine disrupter compounds in advanced water treatments.

Keywords: Advanced treatment; Biphenol A; Cyclodextrin; Photocatalysis; Spatially separated co-catalyst.

Publication types

  • Research Support, Non-U.S. Gov't