High-Level Heterologous Expression of Endo-1,4-β-Xylanase from Penicillium citrinum in Pichia pastoris X-33 Directed through Codon Optimization and Optimized Expression

Molecules. 2019 Sep 27;24(19):3515. doi: 10.3390/molecules24193515.

Abstract

Most common industrial xylanases are produced from filamentous fungi. In this study, the codon-optimized xynA gene encoding xylanase A from the fungus Penicilium citrinum was successfully synthesized and expressed in the yeast Pichia pastoris. The levels of secreted enzyme activity under the control of glyceraldehyde-3-phosphate dehydrogenase (PGAP) and alcohol oxidase 1 (PAOX1) promoters were compared. The Pc Xyn11A was produced as a soluble protein and the total xylanase activity under the control of PGAP and PAOX1 was 34- and 193-fold, respectively, higher than that produced by the native strain of P. citrinum. The Pc Xyn11A produced under the control of the PAOX1 reached a maximum activity of 676 U/mL when induced with 1% (v/v) methanol every 24 h for 5 days. The xylanase was purified by ion exchange chromatography and then characterized. The enzyme was optimally active at 55 °C and pH 5.0 but stable over a broad pH range (3.0-9.0), retaining more than 80% of the original activity after 24 h or after pre-incubation at 40 °C for 1 h. With birchwood xylan as a substrate, Pc Xyn11A showed a Km(app) of 2.8 mg/mL, and a kcat of 243 s-1. The high level of secretion of Pc Xyn11A and its stability over a wide range of pH and moderate temperatures could make it useful for a variety of biotechnological applications.

Keywords: PAOX1; PGAP; Penicillium citrinum; Pichia pastoris; codon optimization; overexpression; xylanase A.

MeSH terms

  • Base Sequence
  • Codon*
  • Endo-1,4-beta Xylanases / chemistry
  • Endo-1,4-beta Xylanases / genetics*
  • Endo-1,4-beta Xylanases / metabolism
  • Enzyme Activation
  • Gene Expression Regulation*
  • Genetic Vectors / genetics
  • Hydrogen-Ion Concentration
  • Penicillium / enzymology*
  • Penicillium / genetics*
  • Pichia / genetics*
  • Recombinant Proteins*
  • Temperature
  • Thermodynamics

Substances

  • Codon
  • Recombinant Proteins
  • Endo-1,4-beta Xylanases