Hypothesis about electron quantum tunneling during sonochemical splitting of water molecule

Ultrason Sonochem. 2020 Jan:60:104789. doi: 10.1016/j.ultsonch.2019.104789. Epub 2019 Sep 21.

Abstract

Quantum tunneling in chemistry is often attributed to the processes at low or near room temperatures when the rate of thermal reactions becomes far less than the rate of quantum tunneling. However, in some rapid processes, quantum tunneling can be observed even at high temperatures. Herein, we report the experimental evidence for anomalous H/D kinetic isotope effect (KIE) during sonochemical dissociation of water molecule driven by 20 kHz power ultrasound measured in H2O/D2O mixtures saturated with Ar or Xe. Hydrogen released during ultrasonic treatment is enriched by light isotope. The observed H/D KIE (α = 2.15-1.50) is much larger than what is calculated assuming a classical KIE for Tg = 5000 K (α = 1.15) obtained from the sonoluminescence spectra in H2O and D2O. Furthermore, the α values sharply decrease with increasing of H2O content in H2O/D2O mixtures reaching a steady-state value close to α = 1.50, which also cannot be explained by O-H/O-D zero-point energy difference. We suggest that these results can be understood in terms of quantum electron tunneling occurring in nonequilibrium picosecond plasma produced at the last stage of cavitation bubble collapse. Thermal homolytic splitting of water molecule is inhibited by extremely short lifetime of such plasma. On the contrary, immensely short traversal time for electron tunneling in water allows H2O dissociation by quantum tunneling mechanism.

Keywords: Kinetic isotope effect; Plasma; Quantum tunneling; Sonochemistry; Water splitting.