Energy efficient electrodes for lithium-ion batteries: Recovered and processed from spent primary batteries

J Hazard Mater. 2020 Feb 15:384:121112. doi: 10.1016/j.jhazmat.2019.121112. Epub 2019 Aug 28.

Abstract

In an attempt to develop low cost, energy efficient and advanced electrode material for lithium-ion batteries (LIBs), waste-to-wealth derived as well as value added spent battery materials as potential alternatives assume paramount importance. By combining the low lithiation potential advantages, one can arrive at energy efficient electrodes bestowed with cost effective and eco-friendly benefits required for practical LIB applications. In the present study, Zn and Mn-salts along with C were successfully extracted from the spent zinc carbon batteries through a simple and efficient hydrometallurgy approach and decomposed thermally to obtain ZnMn2O4 at 350 °C for 12 h and 450 °C for 3 h. Further, C-ZnMn2O4 nanocomposites were prepared and demonstrated for appreciable electrochemical performance in LIB assembly. Our results show that C-ZnMn2O4 composites prepared at 350 °C and 450 °C demonstrate better performance than pristine ZnMn2O4 anode due to the improved electronic conductivity rendered by the added carbon obtained from spent primary battery. In particular, C-ZnMn2O4 at 350 °C @12 h exhibits appreciable electrochemical performance by showing a stable and higher capacity of 600 mAhg-1 at a current density of 50 mAg-1 in the voltage range of 0.01-3.0 V and qualifies it as a better performing cost-effective anode for LIBs.

Keywords: Cyclic voltammetry; Hydrometallurgy; Lithium-ion battery; Spent zinc-carbon battery; Waste-to-wealth.

Publication types

  • Research Support, Non-U.S. Gov't