Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN

FASEB J. 2019 Dec;33(12):13435-13449. doi: 10.1096/fj.201900722R. Epub 2019 Sep 27.

Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide and is characterized by a fast-paced growth. Like other solid tumors, the HNSCC growth rate results in the development of hypoxic regions identified by the expression of hypoxia-inducible factor 1α (HIF-1α). Interestingly, clinical data have shown that pharmacological induction of intratumoral hypoxia caused an unexpected rise in tumor metastasis and the accumulation of cancer stem cells (CSCs). However, little is known on the molecular circuitries involved in the presence of intratumoral hypoxia and the augmented population of CSCs. Here we explore the impact of hypoxia on the behavior of HNSCC and define that the controlling function of phosphatase and tensin homolog (PTEN) over HIF-1α expression and CSC accumulation are de-regulated during hypoxic events. Our findings indicate that hypoxic niches are poised to accumulate CSCs in a molecular process driven by the loss of PTEN activity. Furthermore, our data suggest that targeted therapies aiming at the PTEN/PI3K signaling may constitute an effective strategy to counteract the development of intratumoral hypoxia and the accumulation of CSCs.-Nascimento-Filho, C. H. V., Webber, L. P., Borgato, G. B., Goloni-Bertollo, E. M., Squarize, C. H., Castilho, R. M. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN.

Keywords: EMT; ROS; cancer stem cell; epithelial-mesenchymal transition; mTOR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Cell Movement
  • Cell Proliferation
  • Epithelial-Mesenchymal Transition*
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Head and Neck Neoplasms / genetics
  • Head and Neck Neoplasms / metabolism
  • Head and Neck Neoplasms / pathology*
  • Humans
  • Hypoxia / physiopathology*
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Mice
  • Mice, Nude
  • Neoplasm Invasiveness
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology*
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism*
  • Signal Transduction
  • Squamous Cell Carcinoma of Head and Neck / genetics
  • Squamous Cell Carcinoma of Head and Neck / metabolism
  • Squamous Cell Carcinoma of Head and Neck / pathology
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • PTEN Phosphohydrolase
  • PTEN protein, human