The circular RNA PVT1/miR-203/HOXD3 pathway promotes the progression of human hepatocellular carcinoma

Biol Open. 2019 Sep 24;8(9):bio043687. doi: 10.1242/bio.043687.

Abstract

Accumulating evidence suggests that circular RNAs (circRNAs) play important roles in various physiological and pathological processes. In the present study, we explored the role of circRNA PVT1 in hepatocellular carcinoma (HCC). qRT-PCR was performed to detect the relative expression of circPVT1 in HCC tissues and cell lines. The oncogenic roles of circPVT1 in HCC were evaluated by cell counting kit-8 (CCK-8) assay, ethynyl deoxyuridine (EdU) incorporation assays, transwell assays, flow cytometry and in vivo xenograft growth. Furthermore, bioinformatics, luciferase reporter assays and rescue experiments were conducted to determine the underlying mechanism of circPVT1 in HCC. Enhanced circPVT1 expression was detected in HCC tissues, which was closely associated with poor prognosis of patients with HCC. Knockdown of circPVT1 decreased the proliferation and migration ability of HCC cell lines in vitro Conversely, upregulation of circPVT1 improved the growth and migration in HCC cells. Mechanistically, we found that circPVT1 could bind directly to miR-203 and contributed to the initiation and progression of HCC by regulating miR-203/homebox D3 (HOXD3) pathway. In conclusion, our study reveals that circPVT1 participates in the progression of HCC through the miR-203/homeobox D3 (HOXD3) pathway and might represent a potential therapeutic target for HCC treatment.

Keywords: CircPVT1; HOXD3; Hepatocellular carcinoma; MiR-203; Proliferation and migration.