Mechanism and predictive model development of reaction rate constants for N-center radicals with O2

Chemosphere. 2019 Dec:237:124411. doi: 10.1016/j.chemosphere.2019.124411. Epub 2019 Aug 6.

Abstract

Atmospheric oxidation of NHx-containing (x = 1, 2) compounds can produce N-center radicals, a precursor of toxic nitrosamines. The reaction rate constant (kO2) with O2 has been considered as an important parameter to determine the nitrosamines yield in the subsequent reactions of N-center radicals. However, available kO2 values of N-center radicals are limited. Here, a three-step scheme including mechanistic analysis and kinetics calculation of the reactions of 28 various N-center radicals with O2, and model development was taken to solve the kO2 data shortage. Mainly employed tools include highly cost-expensive coupled-cluster theory (CCSD(T)), kinetic model and statistics. The results indicate that the direct H-abstraction pathway is the most favorable for the reactions of all considered N-center radicals with O2. The specific molecular conformation and the C-H bond energy of the N-center radicals are two important factors to determine kO2 values. Based on the mechanistic understanding of kO2 values, a quantitative structure-activity relationship (QSAR) model of kO2 values was developed. The model has satisfactory goodness-of-fit, robustness and predictive ability. The determined kO2 values and the in silico methods provide a scientific base for assessing formation risk of toxic nitrosamines in the atmosphere.

Keywords: N-Center radicals; Quantitative structure-activity relationship; Reaction mechanism; Reaction rate constants.

MeSH terms

  • Air Pollutants / chemistry*
  • Atmosphere / chemistry
  • Computer Simulation
  • Free Radicals / chemistry*
  • Kinetics
  • Models, Chemical
  • Molecular Conformation
  • Nitrosamines / chemistry
  • Oxidation-Reduction
  • Oxygen / chemistry*
  • Quantitative Structure-Activity Relationship*

Substances

  • Air Pollutants
  • Free Radicals
  • Nitrosamines
  • Oxygen