Noninvasive Ultrasound Deep Brain Stimulation for the Treatment of Parkinson's Disease Model Mouse

Research (Wash D C). 2019 Jul 9:2019:1748489. doi: 10.34133/2019/1748489. eCollection 2019.

Abstract

Modulating basal ganglia circuitry is of great significance in the improvement of motor function in Parkinson's disease (PD). Here, for the first time, we demonstrate that noninvasive ultrasound deep brain stimulation (UDBS) of the subthalamic nucleus (STN) or the globus pallidus (GP) improves motor behavior in a subacute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunohistochemical c-Fos protein expression confirms that there is a relatively high level of c-Fos expression in the STN-UDBS and GP-UDBS group compared with sham group (both p < 0.05). Furthermore, STN-UDBS or GP-UDBS significantly increases the latency to fall in the rotarod test on day 9 (p < 0.05) and decreases the time spent climbing down a vertical rod in the pole test on day 12 (p < 0.05). Moreover, our results reveal that STN-UDBS or GP-UDBS protects the dopamine (DA) neurons from MPTP neurotoxicity by downregulating Bax (p < 0.001), upregulating Bcl-2 (p < 0.01), blocking cytochrome c (Cyt C) release from mitochondria (p < 0.05), and reducing cleaved-caspase 3 activity (p < 0.01) in the ipsilateral substantia nigra (SN). Additionally, the safety of ultrasound stimulation is characterized by hematoxylin and eosin (HE) and Nissl staining; no hemorrhage or tissue damage is detected. These data demonstrate that UDBS enables modulation of STN or GP neural activity and leads to neuroprotection in PD mice, potentially serving as a noninvasive strategy for the clinical treatment of PD.