Serum Levels of Mitochondrial and Microbial Metabolites Reflect Mitochondrial Dysfunction in Different Stages of Sepsis

Metabolites. 2019 Sep 20;9(10):196. doi: 10.3390/metabo9100196.

Abstract

Mechanisms of mitochondrial dysfunction in sepsis are being extensively studied in recent years. During our study, concentrations of microbial phenolic acids and mitochondrial metabolites (succinic, α-ketoglutaric, fumaric, itaconic acids) as indicators of sepsis and mitochondrial dysfunction, respectively, are measured by gas chromatography-mass spectrometry (GC-MS) in the blood of critically ill patients at the early and late stages of documented sepsis. The increase in levels of some phenylcarboxylic (phenyllactic (PhLA), p-hydroxyphenylacetic (p-HPhAA), p-hydroxyphenyllactic (p-HPhAA)) acids (PhCAs), simultaneously with a rise in levels of mitochondrial dicarboxylic acids, are mainly detected during the late stage of sepsis, especially succinic acid (up to 100-1000 µM). Itaconic acid is found in low concentrations (0.5-2.3 µM) only at early-stage sepsis. PhCAs in vitro inhibits succinate dehydrogenase (SDH) in isolated mitochondria but, unlike itaconic acid which acts as a competitive inhibitor of SDH, microbial metabolites most likely act on the ubiquinone binding site of the respiratory chain. A close correlation of the level of succinic acid in serum and sepsis-induced organ dysfunction is revealed, moreover the most significant correlation is observed at high concentrations of phenolic microbial metabolites (PhCAs) in late-stage sepsis. These data indicate the promise of such an approach for early detection, monitoring the progression of organ dysfunction and predicting the risk of non-survival in sepsis.

Keywords: GC–MS; acidosis; aromatic microbial metabolites; fumaric acid; itaconic acid; mitochondrial dysfunction; phenylcarboxylic acids; sepsis; succinate dehydrogenase; succinic acid.