Fabrication and Evaluation of Trimethylmethoxysilane (TMMOS)-Derived Membranes for Gas Separation

Membranes (Basel). 2019 Sep 20;9(10):123. doi: 10.3390/membranes9100123.

Abstract

Gas separation membranes were fabricated with varying trimethylmethoxysilane(TMMOS)/tetraethoxy orthosilicate (TEOS) ratios by a chemical vapor deposition (CVD) method at650 °C and atmospheric pressure. The membrane had a high H2 permeance of 8.3 × 10-7 mol m-2 s-1Pa-1 with H2/CH4 selectivity of 140 and H2/C2H6 selectivity of 180 at 300 °C. Fourier transforminfrared (FTIR) measurements indicated existence of methyl groups at high preparationtemperature (650 °C), which led to a higher hydrothermal stability of the TMMOS-derivedmembranes than of a pure TEOS-derived membrane. Temperature-dependence measurements ofthe permeance of various gas species were used to establish a permeation mechanism. It was foundthat smaller species (He, H2, and Ne) followed a solid-state diffusion model while larger species (N2,CO2, and CH4) followed a gas translational diffusion model.

Keywords: CVD; hydrogen separation; pore size control; separation mechanism; silica-based membrane; trimethylmethoxisilane.