Production of Novel Polygalacturonase from Bacillus paralicheniformis CBS32 and Application to Depolymerization of Ramie Fiber

Polymers (Basel). 2019 Sep 19;11(9):1525. doi: 10.3390/polym11091525.

Abstract

Polygalacturonase (EC. 3.2.1.15) is an enzyme that hydrolyzes the alpha-1,4 glycosidic bonds between galacturonic acid. In this study, an alkaline polygalacturonase producer Bacillus paralicheniformis CBS32 was isolated from kimchi (conventional Korean fermented food). The 16S rRNA sequence analysis of the isolated strain revealed that it was 99.92% identical to B. paralicheniformis KJ 16LBMN01000156. The polygalacturonase from B. paralicheniformis CBS32 was named PN32, and the purified PN32 showed a 16.8% yield and a 33-fold purity compared to the crude broth. The molecular mass, 110 kDa, was determined by SDS-PAGE, and the active band was confirmed by zymography analysis. The N-terminal amino acid sequence residues of PN32 were determined to be Gly-Val-Lys-Glu-Val-X-Gln-Thr-Phe. In the sequence comparison, PN32 was suggested as a novel polygalacturonase, since the sequence was not matched with the previous reports. In an application study, enzymatic depolymerization of ramie was performed for fiber degumming, and the result showed that the PN32 had a 28% higher depolymerization compared to the commercial pectinase. Overall, based on the results, PN32 has high potential for industrial applications.

Keywords: Bacillus; enzymatic depolymerization; polygalacturonase; ramie fiber.