MIMO Radar Accurate 3-D Imaging and Motion Parameter Estimation for Target with Complex Motions

Sensors (Basel). 2019 Sep 13;19(18):3961. doi: 10.3390/s19183961.

Abstract

In this paper, three-dimensional (3-D) multiple-input multiple-output (MIMO) radar accurate localization and imaging method with motion parameter estimation is proposed for targets with complex motions. To characterize the target accurately, a multi-dimensional signal model is established including the parameters on target 3-D position, translation velocity, and rotating angular velocity. For simplicity, the signal model is transformed into three-joint two-dimensional (2-D) parametric models by analyzing the motion characteristics. Then a gridless method based on atomic norm optimization is proposed to improve precision and simultaneously avoid basis mismatch in traditional compressive sensing (CS) techniques. Once the covariance matrix is obtained by solving the corresponding semi-definite program (SDP), estimating signal parameters via rotational invariance techniques (ESPRIT) can be used to estimate the positions, then motion parameters can be obtained by Least Square (LS) method, accordingly. Afterwards, pairing correction is carried out to remove registration errors by setting judgment conditions according to resolution performance analysis, to improve the accuracy. In this way, high-precision imaging can be realized without a spectral search process, and any slight changes of target posture can be detected accurately. Simulation results show that proposed method can realize accurate localization and imaging with motion parameter estimated efficiently.

Keywords: 3-D imaging; MIMO radar; atomic norm; basis mismatch; complex motions; high-precision; motion parameter estimation; pairing correction.