Parametrically Amplified Low-Power MEMS Capacitive Humidity Sensor

Sensors (Basel). 2019 Sep 13;19(18):3954. doi: 10.3390/s19183954.

Abstract

We present the design, fabrication, and response of a polymer-based Laterally Amplified Chemo-Mechanical (LACM) humidity sensor based on mechanical leveraging and parametric amplification. The device consists of a sense cantilever asymmetrically patterned with a polymer and flanked by two stationary electrodes on the sides. When exposed to a humidity change, the polymer swells after absorbing the analyte and causes the central cantilever to bend laterally towards one side, causing a change in the measured capacitance. The device features an intrinsic gain due to parametric amplification resulting in an enhanced signal-to-noise ratio (SNR). Eleven-fold magnification in sensor response was observed via voltage biasing of the side electrodes without the use of conventional electronic amplifiers. The sensor showed a repeatable and recoverable capacitance change of 11% when exposed to a change in relative humidity from 25-85%. The dynamic characterization of the device also revealed a response time of ~1 s and demonstrated a competitive response with respect to a commercially available reference chip.

Keywords: MEMS; humidity sensor; low-power sensors; parametric amplification; spring softening.