Adsorption, aggregation and sedimentation of titanium dioxide nanoparticles and nanotubes in the presence of different sources of humic acids

Sci Total Environ. 2019 Nov 20:692:660-668. doi: 10.1016/j.scitotenv.2019.07.312. Epub 2019 Jul 20.

Abstract

Environmental behavior, bioavailability and risks posed by TiO2, nanomaterials (TiO2 NMs) in surface waters are affected by morphologies of the particles and geochemistry, including pH, inorganic and organic matter. Here, the adsorption, aggregation and sedimentation of TiO2 nanoparticles (TiO2 NPs) and nanotubes (TiO2 NTs) were investigated in the presence of Elliott Soil humic acid (HAE) and Suwannee River humic acids (HAS). The adsorption amount of HA on TiO2 NMs was inversely proportional to pH of solution. Maximum adsorption amount of HA on the surface of TiO2 NMs follows the order TiO2 NPs + HAE (236.05 mg/g) > TiO2 NTs + HAE (146.05 mg/g) > TiO2 NTs + HAS (70.66 mg/g) > TiO2 NPs + HAS (37.48 mg/g). Stability of TiO2 NPs and TiO2 NTs largely depended on their isoelectric point, morphology and solution pH in the absence of HA. Dispersion of TiO2 NMs was enhanced with solution pH deviated from the isoelectric point of nanomaterials due to electrostatic repulsion. Moreover, tubular structures of TiO2 NTs with higher length-diameter ratio seem to aggregate more easily than dose sphere-like TiO2 NPs. This might be due to their spherical structure enhancing steric repulsion. Notably, the adsorption of HA led to disagglomeration and significant stability of TiO2 NPs and TiO2 NTs due to steric hindrance under varying solution pH. In addition, adsorption time, concentration and sources of HA also influenced suspension/sedimentation behavior of TiO2 NPs and TiO2 NTs, and aromatic-rich HAE stabilized TiO2 NMs suspension more aggressively than aliphatic-rich HAS.

Keywords: Adsorption; Aggregation; Humic acid; Nanotubes; Sedimentation; Titanium dioxide nanoparticles.