Biomineralization-inspired Crystallization of Manganese Oxide on Silk Fibroin Nanoparticles for in vivo MR/fluorescence Imaging-assisted Tri-modal Therapy of Cancer

Theranostics. 2019 Aug 14;9(21):6314-6333. doi: 10.7150/thno.36252. eCollection 2019.

Abstract

Regenerated silk fibroin (SF) is a type of natural biomacromolecules with outstanding biocompatibility and biodegradability. However, stimulus-responsive SF-based nanocomplex has seldom been reported for application in tumor diagnosis and therapy. Methods: As a proof-of-concept study, a multifunctional SF@MnO2 nanoparticle-based platform was strategically synthesized using SF as a reductant and a template via a biomineralization-inspired crystallization process in an extremely facile way. Because of their mesoporous structure and abundant amino and carboxyl terminal residues, SF@MnO2 nanoparticles were co-loaded with a photodynamic agent indocyanine green (ICG) and a chemotherapeutic drug doxorubicin (DOX) to form a SF@MnO2/ICG/DOX (SMID) nanocomplex. Results: The obtained product was highly reactive with endogenous hydrogen peroxide (H2O2) in tumor microenvironment, which was decomposed into O2 to enhance tumor-specific photodynamic therapy (PDT). Moreover, SMID nanocomplex produced a strong and stable photothermal effect upon near-infrared (NIR) irradiation for photothermal therapy (PTT) owing to the distinct photothermal response of SF@MnO2 and stably conjugated ICG. The concurrent NIR fluorescence and magnetic resonance (MR) imaging in vivo both indicated effective tumor-specific enrichment of SMID nanoparticles via enhanced permeability and retention (EPR) effect. Animal studies further verified that SMID nanoparticles remarkably improved tumor inhibitive efficacy through combination PTT/PDT/chemotherapy with minimal systemic toxicity or adverse effect. Conclusion: This study demonstrated the promising potential of SF-based nanomaterial to address some of the key challenges in cancer therapy due to unfavorable tumor microenvironment for drug delivery.

Keywords: Combination therapy; MR/fluorescence imaging; Manganese Oxide.; Silk fibroin; Tumor microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomineralization
  • Combined Modality Therapy
  • Crystallization
  • Doxorubicin / administration & dosage*
  • Female
  • Fibroins / chemistry*
  • Humans
  • Hydrogen Peroxide / chemistry
  • Indocyanine Green / administration & dosage
  • Manganese Compounds / chemistry*
  • Mice
  • Mice, Inbred BALB C
  • Nanoparticles / chemistry*
  • Neoplasms / diagnostic imaging*
  • Neoplasms / drug therapy
  • Optical Imaging
  • Oxides / chemistry*
  • Photochemotherapy
  • Tissue Distribution
  • Tumor Microenvironment

Substances

  • Manganese Compounds
  • Oxides
  • manganese oxide
  • Doxorubicin
  • Fibroins
  • Hydrogen Peroxide
  • Indocyanine Green