Quantum Interference Enhanced Chemical Responsivity in Single-Molecule Dithienoborepin Junctions

Chemistry. 2019 Nov 27;25(66):15141-15146. doi: 10.1002/chem.201903315. Epub 2019 Nov 4.

Abstract

Providing a chemical control over charge transport through molecular junctions is vital to developing sensing applications at the single-molecule scale. Quantum-interference effects that affect the charge transport through molecules offer a unique chance to enhance the chemical control. Here, we investigate how interference effects can be harnessed to optimize the response of single molecule dithienoborepin (DTB) junctions to the specific coordination of a fluoride ion in solution. The single-molecule conductance of two DTB isomers is measured using scanning tunneling microscopy break-junction (STM-BJ) before and after fluoride ion exposure. We find a significant change of conductance before and after the capture of a fluoride ion, the magnitude of which depends on the position of the boron atom in the molecular structure. This single-molecule sensor exhibits switching ratios of up to four orders of magnitudes, suggesting that the boron-fluoride coordination can lead to quantum-interference effects. This is confirmed by a quantum chemical characterization, pointing toward a cross-conjugated path through the molecular structure as the origin of the effect.

Keywords: break-junction technique; fluoride ions; quantum interference; scanning tunneling microscopy; single-molecule charge transport.