Rate/Concentration Kinetic Petals: A Transient Method to Examine the Interplay of Surface Reaction Processes

J Phys Chem A. 2019 Oct 10;123(40):8717-8725. doi: 10.1021/acs.jpca.9b05911. Epub 2019 Oct 1.

Abstract

Transient pulse response experiments are used to construct rate/concentration kinetic dependencies, RC Petals and provide a new method to distinguish the timing and interplay of adsorption, surface reaction, and product formation on complex (industrial) materials. A petal shape arises as the dynamic "reaction-diffusion" experiment forces the concentration and reaction rate to return to zero. In contrast to the typical steady-state "Langmuir-type" RC dependence, RC petals have two branches, which arise as a result of decoupled gas and surface concentrations in the non-steady-state regime. To demonstrate this approach, the characteristics of petal shapes using ammonia decomposition as a probe reaction are presented. Ammonia, hydrogen, and nitrogen transformation rates are compared on three simple materials: iron, cobalt, and a bimetallic CoFe preparation when ammonia is pulsed at 550 °C in a low-pressure diffusion reactor. All materials demonstrate a two-branch kinetic RC dependence for ammonia adsorption, and rate constants are quantified in the low-coverage regime. We found that H2 and N2 product formation was dependent on the concentration of surface intermediates for all materials with one exception: for cobalt, an additional fast hydrogen generation process was observed; the rate of which coincided with ammonia adsorption. Nitrogen generation was only significant for CoFe and cobalt and on the CoFe catalyst, a self-inhibition property was observed. A method for estimating the number of active sites based on the RC petals is presented and was applied to the iron and CoFe samples. The surface coverage and rate of formation/conversion of surface intermediates are interpreted from the examination of shape characteristics of the RC petals for each material.