Three-Dimensional Hierarchical Porous Carbon Cathode Derived from Waste Tea Leaves for the Electrocatalytic Degradation of Phenol

Langmuir. 2019 Oct 8;35(40):12914-12926. doi: 10.1021/acs.langmuir.9b02017. Epub 2019 Sep 26.

Abstract

Tea leaves have been explored as an economically viable and environmentally friendly source of biomass carbon. Tea leaf porous carbon (TPC) with a three-dimensional (3D) structure was prepared by a potassium hydroxide pretreatment and high-temperature calcination method, and the preparation process was simple and self-templating. The prepared TPC has a large specific surface area (1620.05 m2 g-1), three-dimensional multilayer pore structure, uniform pore size, and high oxygen content (15.51%). Both the calcination temperature and the activation level have an effect on the structure and performance of the TPC. The TPC electrode can generate a large amount of hydrogen peroxide in the initial stage of the degradation process, thereby increasing the amount of hydroxyl radicals generated and removing organic pollutants. Therefore, phenol was used to test the degradation effects and evaluate the degradation performance of TPC. Under suitable degradation conditions, TPC-800-2 showed a 95.41% degradation rate after 120 min of degradation, which is superior to that of other calcination temperatures and activation levels. The removal efficiency of chemical oxygen demand after 180 min was 90.0% and showed good stability after being used 20 times. Our work illustrates that a simple, high-performance self-templating synthetic strategy for producing novel 3D-TPC from biomass sources can play a significant role in the actual wastewater treatment of other biomass materials.

Publication types

  • Research Support, Non-U.S. Gov't