Method for Recording Broadband High Resolution Emission Spectra of Laboratory Lightning Arcs

J Vis Exp. 2019 Aug 27:(150). doi: 10.3791/56336.

Abstract

Lightning is one of the most common and destructive forces in nature and has long been studied using spectroscopic techniques, first with traditional camera film methods and then digital camera technology, from which several important characteristics have been derived. However, such work has always been limited due to the inherently random and non-repeatable nature of natural lightning events in the field. Recent developments in lightning test facilities now allow the reproducible generation of lightning arcs within controlled laboratory environments, providing a test bed for the development of new sensors and diagnostic techniques to understand lightning mechanisms better. One such technique is a spectroscopic system using digital camera technology capable of identifying the chemical elements with which the lightning arc interacts, with these data then being used to derive further characteristics. In this paper, the spectroscopic system is used to obtain the emission spectrum from a 100 kA peak, 100 µs duration lightning arc generated across a pair of hemispherical tungsten electrodes separated by a small air gap. To maintain a spectral resolution of less than 1 nm, several individual spectra were recorded across discrete wavelength ranges, averaged, stitched, and corrected to produce a final composite spectrum in the 450 nm (blue light) to 890 nm (near infrared light) range. Characteristic peaks within the data were then compared to an established publicly available database to identify the chemical element interactions. This method is readily applicable to a variety of other light emitting events, such as fast electrical discharges, partial discharges, and sparking in electrical equipment, apparatus, and systems.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Calibration
  • Cosmic Radiation
  • Electricity
  • Electrodes
  • Laboratories*
  • Lightning*
  • Spectrum Analysis*