Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans

Sci Total Environ. 2020 Jan 1:698:134175. doi: 10.1016/j.scitotenv.2019.134175. Epub 2019 Aug 28.

Abstract

Although jarosite and visible light are important factors for the formation of acid mine drainage (AMD), the effects of combined jarosite and visible light on chalcopyrite biodissolution have not been explored until now. In order to fill this knowledge gap, the combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans were investigated. The results indicated that jarosite and visible light could significantly accelerate chalcopyrite biodissolution, thus releasing more copper ions, iron ions and producing more acid. This in turn suggests enhanced generation of AMD under these conditions. Biodissolution results, mineral surface morphology, mineralogical phase and elemental composition analyses revealed that the promotion of chalcopyrite dissolution by additional jarosite and visible light was mainly attributed to the acceleration of ferric iron/ferrous iron cycling and the inhibition of the formation of a passivation layer (jarosite and Sn2-/S0) on the surface of chalcopyrite. This study provides a better understanding of the effects of jarosite and visible light on chalcopyrite biodissolution. In the future, the influences of jarosite and visible light on chalcopyrite dissolution should be considered in AMD evaluation to ensure reliability.

Keywords: Acid mine drainage; Acidithiobacillus ferrooxidans; Biodissolution; Chalcopyrite; Jarosite; Visible light.

MeSH terms

  • Acidithiobacillus / metabolism*
  • Biodegradation, Environmental*
  • Copper / chemistry*
  • Ferric Compounds / chemistry*
  • Light
  • Sulfates / chemistry*

Substances

  • Ferric Compounds
  • Sulfates
  • jarosite
  • chalcopyrite
  • Copper