Microbial characterization and fermentative characteristics of crop maize ensiled with unsalable vegetables

Sci Rep. 2019 Sep 12;9(1):13183. doi: 10.1038/s41598-019-49608-w.

Abstract

Incorporation of carrot or pumpkin at 0, 20 or 40% dry matter (DM-basis) with crop maize, with or without a silage inoculant was evaluated after 70 days ensiling for microbial community diversity, nutrient composition, and aerobic stability. Inclusion of carrots or pumpkin had a strong effect on the silage bacterial community structure but not the fungal community. Bacterial microbial richness was also reduced (P = 0.01) by increasing vegetable proportion. Inverse Simpson's diversity increased (P = 0.04) by 18.3% with carrot maize silage as opposed to pumpkin maize silage at 20 or 40% DM. After 70 d ensiling, silage bacterial microbiota was dominated by Lactobacillus spp. and the fungal microbiota by Candida tropicalis, Kazachstania humilis and Fusarium denticulatum. After 14 d aerobic exposure, fungal diversity was not influenced (P ≥ 0.13) by vegetable type or proportion of inclusion in the silage. Inoculation of vegetable silage lowered silage surface temperatures on day-7 (P = 0.03) and day-14 (P ≤ 0.01) of aerobic stability analysis. Our findings suggest that ensiling unsalable vegetables with crop maize can successfully replace forage at 20 or 40% DM to produce a high-quality livestock feed.

MeSH terms

  • Animal Feed*
  • Fungi / growth & development*
  • Lactobacillus / growth & development*
  • Microbiota*
  • Silage / microbiology*
  • Vegetables*
  • Zea mays*