Chemical bond formation showing a transition from physisorption to chemisorption

Science. 2019 Oct 11;366(6462):235-238. doi: 10.1126/science.aay3444. Epub 2019 Sep 12.

Abstract

Surface molecules can transition from physisorption through weak van der Waals forces to a strongly bound chemisorption state by overcoming an energy barrier. We show that a carbon monoxide (CO) molecule adsorbed to the tip of an atomic force microscope enables a controlled observation of bond formation, including its potential transition from physisorption to chemisorption. During imaging of copper (Cu) and iron (Fe) adatoms on a Cu(111) surface, the CO was not chemically inert but transited through a physisorbed local energy minimum into a chemisorbed global minimum, and an energy barrier was seen for the Fe adatom. Density functional theory reveals that the transition occurs through a hybridization of the electronic states of the CO molecule mainly with s-, p z -, and d z 2-type states of the Fe and Cu adatoms, leading to chemical bonding.

Publication types

  • Research Support, Non-U.S. Gov't